
MoisturEC version 1.0 
 

MoisturEC is an R-based GUI used to combine electrical conductivity (EC) data with point 

moisture measurements for an updated moisture estimate capitalizing on the accuracy of point moisture 

measurements and the spatial coverage of EC data.  It is assumed that the EC data have been inverted 

already and that EC values correspond to points in space. 

Point moisture information is usually accurate but spatially sparse.  EC data from geophysics 

tends to have good spatial coverage by comparison, but lacks direct sensitivity to changes in moisture 

content, particularly at increasing distance from the geophysical measurement point. 

This help file goes through the practical steps of using moisturEC, as well as details of the 

computations used.  Further help is available by hovering the mouse over inputs within the GUI. 

At a minimum, two data files are required: one with EC data, and one with point moisture data.  

The EC data is converted to moisture, either using an Archie relation (default), using collocated point 

moisture/EC data values, or by user uploaded calibration data.  The user can then click “calculate 

moisture” to combine the estimates through an optimization of a tradeoff parameter.  The results are 

displayed in a second tab in the GUI.  Results are also output as text and .vtk files (for visualization in 

Paraview). 

 

System requirements 
MoisturEC has been tested on a Windows system with R version 3.4.3.  Linux and Mac operating systems 

are untested, as are earlier versions of R.  

Installation 
 



[1] Download and install R (https://www.r-project.org/) and (recommended) Rstudio 

(https://www.rstudio.com/) 

[2] open R and install the needed packages.  This can be done with the following commands: 

#downloads and installs needed packages 

list.of.packages = c('shiny','shinyBS','shinyjs','ggplot2','viridis', 

'plotly','Matrix','pracma') 

new.packages = list.of.packages[!(list.of.packages %in% 

installed.packages()[,"Package"])] 

if(length(new.packages)) install.packages(new.packages,dependencies = T, repos 

= "https://mirrors.nics.utk.edu/cran/") 

 

[3] Unzip the mEC_Lite folder, open the “mEC.r” script with Rstudio, and run the app (current 

working directory must be mEC_Lite folder). 

Overview 
What does moisturEC do? 

 Combines 2D or 3D electrical conductivity (EC) and point moisture data into single moisture 

estimate 

 Is open source allowing the user to view or modify the code 

 Provides convenient, visual framework to estimate moisture from EC data, with three options for 

EC-moisture conversion 

 Provides numerous interactive plots of data and results 

 Determines appropriate level of smoothing of the final estimate based on user supplied 

information on data error, parameter error, and resolution. 

 Outputs plots and text files of results 

 

What does moisturEC NOT do? 
 Invert raw geophysical data 

 Interpolate/krige point moisture information alone 

https://www.r-project.org/


 

Inputs 
 

Data files: 

 

Electrical conductivity (EC) data and point moisture data are uploaded via the GUI.  Optional 

input of a resolution data file and a calibration data file are also available. 

EC Data file  

A .csv file containing a header with columns X, Y, Z, EC (S/m) and % error in EC 

EC data appear in a plot in the lower left once successfully loaded. 



 

Moisture Data File 

A .csv file containing a header with columns X, Y, Z, moisture and % error in moisture 

Upon loading this file, point moisture data will be plotted.   

 



When both EC and point moisture data are loaded, a plot at the right shows the combined 

information from both data types (note this is not the inverse result, but rather just the EC-derived 

moisture values with point moisture information plotted on top as crosses). 

 

 

 

Resolution Data File 

A .csv file containing a header with column X, Y, Z, resolution.  Resolution values range from 0 

to 1, with 0 indicating no resolving power and 1 indicating maximum resolving power.  The resolution 

information does not need to be of the same size as the data or the model grid – values will be extended to 

their nearest data point and will be used to scale the data weights.   

This is an ad hoc approach to adding the effect of variable model resolution from geophysical 

inversion into the moisture estimation.  Some geophysical inversion programs allow for output of a model 

resolution matrix, whose diagonal elements are considered here.  These values, ranging from 0 to 1, are 

used to scale the data weights in the moisture estimation approach such that weight = resolution/data 

error.  A resolution of 1 therefore has no effect on the data weights, which are influenced only by the data 



error.  Diminishing resolution, however, also diminishes the weight, until a resolution of 0 effectively 

gives the data no weight in the estimation.   

Input of the resolution matrix is not necessary.  The user could, instead of loading a resolution 

matrix, equivalently adjust the errors in the EC data file prior to the estimation to produce the same result.  

However, it is important to consider the spatial resolution of the EC data in some way when running this 

program. 

Upon loading the file, the resolution data will be plotted at the bottom of the screen. 

 

Calibration data file and options 

A .csv file containing a header with column EC (S/m) and moisture.  These data might be derived 

from a laboratory experiment where one increases moisture of a sample incrementally inside a box where 

resistivity data may be collected.  If a file is selected, then a regression based calibration data will be used 

to calculate EC moisture values and a plot showing the calibration data will appear in the lower right. 

Below the calibration data file are two buttons: 



 

“Use data” uses collocated EC and point moisture information to form a regression.  Clicking this 

button will display a plot in the lower right of EC vs. closest point moisture value, as well as the fit to the 

data. 

 

The “use Archie’s Law” utilizes the Archie parameters at the right of the GUI to convert EC to 

moisture.  The plot in the lower right will display values of moisture computed from Archie’s Law for a 

range of electrical conductivity values.  This can be a useful guideline for reasonable Archie values in the 

case where they are unknown:   

 



In this example, moisture values greater than the porosity (0.3) are unrealistic.  We can see that a 

conductivity of about 0.1 S/m produces this maximum moisture content.  If EC data are higher than 0.1 

S/m, the Archie parameters need adjustment. 

Grid parameters: 

 

The moisture estimation field is divided into nx x ny x nz grids, evenly spaced between 

xmin/xmax, ymin/ymax, and zmin/zmax respectively.  The user can choose whether to explicitly specify 

each dimension and bounds, or simply select a maximum number of grid points (maxgrid) to 

automatically determine equally spaced nodes in each spatial dimension based on data bounds or 

specified study bounds).  Leaving values as NA prompts automatic selection of the option.  MoisturEC 

contains code to handle a mixture of automatic selection and user input for this set of options.  

 

These grid nodes are the model parameters where moisture is to be estimated.  They are sorted 

within the program in increasing order, cycling fastest on x, then y, then z.  The figure below shows an 

example of a model with nx = 3, ny = 3, and nz = 3.  Parameters are shown as m1 through m27. 



 

 

Calibration options and errors 
 

Archie’s Law 

This program uses one of three methods to calculate moisture from EC.  The first method is using 

a rearranged version of Archie’s Law 

   

 

 
𝜃 = 𝜙 (

𝜎𝑏

(𝜙𝑖𝑛𝑡)
𝑚𝜎𝑤

)
1
𝑛⁄

, 
(1) 

 

𝜃 = moisture content 

𝜎𝑏 = bulk conductivity (EC data) 

𝜎𝑤 = pore fluid conductivity 

𝜙 = total porosity 

𝜙𝑖𝑛𝑡 = interconnected porosity 



𝑚 = ’cementation‘ factor which relates to pore geometry 

𝑛 = exponent describing the variation of resistivity with water saturation 

 

Errors in these parameters can also be included in 𝛿𝜙, 𝛿𝜙𝑖𝑛𝑡, 𝛿𝜎𝑤, 𝛿𝑚, 𝛿𝑛.  These errors, along 

with the data errors 𝛿𝜎𝑏, are propagated through Archie’s Law using laws of error propagation for 

multiplication/division and exponents. 

Calibration from separate experiment 

The second method uses a calibration data file containing 𝜃 and 𝜎𝑏 information supplied by the 

user.  The parameters 𝑥 and 𝑛 are estimated through a linear regression: 

 ln(𝜃) = ln(𝑥) +
ln(𝜎𝑏)

𝑛
, (2) 

Errors in 𝑥 and 𝑛 are determined through actual errors in the regression, and are included as a 

source of uncertainty in the final moisture estimate. 

Calibration from data itself 

 The final method uses point moisture information and finds the nearest (spatially) EC values to 

calculate the parameters in Eq. 2 above. 

Inversion 
Clicking “calculate moisture” will initiate the process of combining the EC-derived moisture 

content and point moisture. 

 

Moisture content at grid nodes, 𝐦, is first estimated through a linear solution of the equation, 



 [𝐉T𝐂D
−1𝐉 + 𝛼𝐃T𝐃]𝐦 =  𝐉T𝐂D

−1𝐝, (3) 

where  

𝐝 is a column vector of all moisture data.  It consists of combined point moisture and EC-derived 

estimates of moisture content. 

𝐉 is the Jacobian matrix (M x N).  In this case, 𝐉 consists of ones in the rows and columns that correspond 

to the nearest grid point where data are available; elsewhere zero. 

𝐂D is a diagonal covariance matrix which consists of the measurement error variances 𝐞 (and 𝐂D
−1 are the 

data weights) 

𝐃 is regularization matrix (M x M).  It consists of a first derivative finite-difference filter between 

adjacent model nodes. 

𝛼 is a tradeoff term that controls the balance between regularization criteria and data misfit.  Larger 

values for 𝛼 promote an increasingly flat solution. 

For the first estimate, 𝛼 is set to 1 (equal trade between smoothing and data misfit).  The tradeoff 

value 𝛼 is then repeatedly perturbed to find an optimum value for 𝛼 to use to compute the final set of 

model parameters, 𝐦.   

“Optimum” means that the misfit between the data itself (EC-derived moisture and point 

moisture) and the linear solution to Eq. 3 is on the order of errors input to the estimation (which include 

data errors, errors due to model resolution, and Archie/calibration parameter error). 

When complete 

Details on estimation of the tradeoff term, 𝛼 

A value for 𝛼 is achieved through a golden section search and successive parabolic interpolation 

(optimize function in R).  The optimize function searches for a minimum value of an objective 

function,𝛷,  

 

 

 

𝛷 = (𝜒2 − 1)2, (4) 

 

which is informed by a chi-squared statistic, 𝜒2,  

 



 

𝜒2 =
√
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, 

(5) 

where the 𝑒𝑖values are the propagated errors for each EC-derived and point moisture measurement.  Thus, 

a solution is achieved when data misfit values are on the order of the errors, which include the data errors, 

calibration/Archie errors, and weighting from resolution.   

 

Details of the Jacobian matrix, 𝐉 

The Jacobian is ordinarily a gauge for how much changes in model parameters influence changes 

in data.  In the case of moisturEC, the nearest model cell to each data point is located, and assigned a 

value of 1 in the Jacobian matrix.  All other cells are 0. 

 

Consider the case of a grid of 9 model parameters, with 9 electrical conductivity data points 

(orange circles) and 2 point moisture data points (blue stars).  Note that although model parameters are 

shown as cells, they are actually grid points in the estimation. 



 

 

Then the Jacobian matrix looks like this: 

 d1 d2 d3 d4 d5 d6 d7 d8 d9 d10 d11 

m1 1           

m2  1          

m3   1       1  

m4    1        

m5     1      1 

m6      1      

m7       1     

m8        1    

m9         1   

 

Details of the regularization matrix, 𝐃 

Consider the case where we have a 3 x 3 field, for a total of nine model parameters, or nine grid 

points at which to evaluate moisture content.  The model parameters correspond to positions that cycle 

through horizontal locations first, then vertical locations.  The parameters m1 through m9 are therefore 

spatially represented as shown below.  Note that although model parameters are shown as cells, they are 

actually grid points in the estimation. 

m7 m8 m9 



m4 m5 m6 

m1 m2 m3 

 

A 2D spatial finite difference matrix can be constructed as shown below.  Here, blank cells 

correspond to 0 entries and therefore this matrix is handled as a sparse matrix in R using the package 

Matrix.   

Note differencing between adjacent model elements (2 examples highlighted for m1 and m8).  In 

moisturEC, construction of this matrix takes place in function ‘flatness’, which is a custom function 

written for moisturEC. 

 

“Flatness” first derivative finite difference matrix, 𝐃, and model parameters, m, 

2 -1  -1       m1 

-1 2   -1      m2 

 -1 2   -1     m3 

-1   2 -1      m4 

 -1   2 -1     m5 

  -1  -1 2     m6 

   -1   2 -1   m7 

    -1  -1 2   m8 



     -1  -1 2  m9 

A series of finite difference equations results when 𝐃 is multiplied by the vector of model parameters, for 

example, 

2m1- m2 – m4 

2m8- m7 – m5 

 

m7 m8 m9 

m4 m5 m6 

m1 m2 m3 
 

 

 

flatness = function(nx,ny,nz) { 

  #to calculate the first derivative 'flatness' matrix D 

  library(Matrix) 

 

  npar = nx*ny*nz 

   

  Dx = Matrix(data = rep(0,npar), nrow = npar, ncol = npar, sparse = T) 

  Dy = Matrix(data = rep(0,npar), nrow = npar, ncol = npar, sparse = T) 

  Dz = Matrix(data = rep(0,npar), nrow = npar, ncol = npar, sparse = T) 

   

   

  ex = expand.grid(1:nx,1:ny,1:nz) 

  ixind = ex[,1] 

  iyind = ex[,2] 

  izind = ex[,3] 

   

  inode = 1:(nx*ny*nz) 

  ix = ixind[inode] 

  iy = iyind[inode] 

  iz = izind[inode] 

   

  iwest = inode - 1 

  ieast = inode + 1 

   

  inorth = inode + nx 

  isouth = inode - nx 

   



  iup = inode + nx*ny 

  idown = inode - nx*ny 

   

  for(loc in 1:npar) { 

     

    if(ix[loc]>=2) { 

      Dx[loc,iwest[loc]] = -1 

      Dx[loc,loc] = 1 

    } else if(nx>1) { 

      Dx[loc,ieast[loc]]=-1 

      Dx[loc,loc]=1 

    } 

     

    if(iy[loc]>=2) { 

      Dy[loc,isouth[loc]]=-1 

      Dy[loc,loc]=1 

    } else if(ny>1) { 

      Dy[loc,inorth[loc]]=-1 

      Dy[loc,loc]=1 

    } 

     

    if(iz[loc]>=2) { 

      Dz[loc,idown[loc]]=-1 

      Dz[loc,loc]=1 

    } else if(nz>1) { 

      Dz[loc,iup[loc]]=-1 

      Dz[loc,loc]=1 

    } 

     

  } 

   

  D=Dx+Dy+Dz 

  return(D) 

} 

 

 


